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Quantum topological excitations �skyrmions� are analyzed from the point of view of their duality to spin
excitations in the different phases of a disordered two-dimensional, short-range interacting, SO�3� quantum
magnetic system of Heisenberg type. The phase diagram displays all the phases, which are allowed by the
duality relation. We study the large-distance behavior of the two-point correlation function of quantum skyr-
mions in each of these phases and, out of this, extract information about the energy spectrum and nontriviality
of these excitations. The skyrmion correlators present a power-law decay in the spin-glass �SG� phase, indi-
cating that these quantum topological excitations are gapless but nontrivial in this phase. The SG phase is dual
to the AF phase, in the sense that topological and spin excitations are, respectively, gapless in each of them.
The Berezinskii-Kosterlitz-Thouless mechanism guarantees the survival of the SG phase at T�0, whereas the
AF phase is washed out to T=0 by the quantum fluctuations. Our results suggest a more symmetric way of
characterizing a SG phase: one for which both the order and disorder parameters vanish, namely, ���=0 and
���=0, where � is the spin and � is the topological excitation operators.
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I. INTRODUCTION

Given a physical system, the spectrum of its possible ex-
citations can, in principle, be roughly divided into two
groups: Hamiltonian and topological excitations. The first
ones correspond to states, which are created out of the
ground state by the action of operators that appear explicitly
in the Hamiltonian. These excitations carry in general quan-
tum numbers corresponding to physical quantities, such as
charge for instance, which are conserved as a consequence of
some continuous symmetry of the Hamiltonian. Topological
excitations, conversely bear quantum numbers that corre-
spond to quantities whose conservation derives from a non-
trivial topology of the space of classical configurations and
whose continuity equation is satisfied as an identity rather
then being the result of some continuous symmetry in the
system.

In this work, we investigate the correlation functions of
quantum skyrmions, which are the topological excitations
that may occur in two-dimensional �2D� magnetic systems
described by a Hamiltonian of the Heisenberg type, with
SO�3� symmetry and nearest-neighbor interactions on a
square lattice. We consider the quenched disordered case,
with a Gaussian random distribution of exchange couplings

centered at an antiferromagnetic �AF� coupling J̄�0 with
variance �J.

This disordered system has been studied by means of a
mapping onto a generalized nonlinear sigma model �NLSM�,
in which the original �staggered� spin is mapped onto the
NLSM field n� �Refs. 1 and 2� and the index �=1, . . . ,n
corresponds to the different replicas which are required for a
quenched average. Eventually we must take the limit
n→0.3–5

A remarkable feature of this system is that, whereas the
quantum fluctuations completely “wash out,” the ordered
Néel phase at T�0, in agreement with the Mermin-Wagner
theorem,6 the spin-glass phase persists even at a finite tem-

perature. Even though this does not violate the theorem, be-
cause there is no spatial long-range order in the spin-glass
�SG� phase, it is somewhat intriguing to have a SG phase at
a finite temperature in a quantum 2D system, specially if we
consider a lot of evidence against the occurrence of a SG
phase at a finite temperature in 2D Ising systems.7 We will
see below, however, as a consequence of our study of quan-
tum topological correlation functions, that this fact can be
understood as a manifestation of the Berezinskii-Kosterlitz-
Thouless �BKT� mechanism.8,9 Indeed, it is the BKT mecha-
nism that allows the existence of a SG phase at a finite tem-
perature in this 2D system. Moreover, the action of this
mechanism is only possible in the case of SO�3� systems,
where a vortex picture for the skyrmions does exist. This
explains why the corresponding SG phase is not found in 2D
Ising systems, where such a picture is absent.

II. DUALITY AND QUANTUM TOPOLOGICAL
EXCITATIONS

The nontriviality of the topology of classical configura-
tions space is ultimately responsible for the stability of clas-
sical topological excitations. At the quantum level, this non-
trivial topology manifests as a degeneracy of the ground
state. The existence of ground-state degeneracy, therefore, is
the indication that, at a quantum-mechanical level, the sys-
tem presents quantum topological excitations in its spectrum.
These excitations, differently from the former, cannot be cre-
ated by acting on the ground state with Hamiltonian opera-
tors. A familiar example of topological excitations is mag-
netic vortices in 2D, which occur in type II superconductors.
The corresponding topological “charge” would be the mag-
netic flux piercing the plane.

Topological excitations, surprisingly, are related to the
concept of order-disorder duality, which plays an important
role in many areas of physics. This can be seen in the fol-
lowing way. Consider a system characterized by a dynamical
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variable �. It could be, for instance, the magnetization on a
ferromagnetic system or the staggered magnetization in an
antiferromagnetic one. Suppose the Hamiltonian H��� pos-
sesses a symmetry, which at the quantum level is imple-
mented by an unitary operator U such that, for g being the
element of the symmetry group, U�U†=g�, with �H ,U�=0.
Since

��� = �0���0� = g�0�U†�U�0� , �2.1�

it follows that if ����0, then necessarily U�0�= �0��� �0�,
that is, the ground state will be degenerate. This, however, as
remarked above, is a sign of nontriviality of the topological
excitations. Now, assume the one-particle quantum topologi-
cal excitation state is given by �Top�=��0�, where � is the
operator that creates these excitations out of the ground state.
Then, if these states are nontrivial, we must have �0���0�
=0 because this means �Top� is orthogonal to the ground
state, as a genuine excited state must be. We conclude, there-
fore, that ����0 implies ���=0.

Conversely if �0���0��0, this would mean that �Top� is
not orthogonal to the ground state and hence is actually not a
genuine excitation. This would imply the ground state should
be unique because otherwise topological excitations should
exist as nontrivial states. Now, if the ground state is unique,
we have U�0�= �0� and Eq. �2.1� would imply ���=0. We
therefore conclude that ����0 implies ���=0.

The previous analysis shows that, if ��� measures the
amount of order �an order parameter� then ��� measures the
amount of disorder, being naturally a disorder parameter. We
see that a duality relation exists between the topological ex-
citations creation operator � and the Hamiltonian operator �.
The physical and mathematical properties of this duality re-
lation are captured by the so-called dual algebra satisfied by
� and �,10 namely,

��x,t���y,t� = g�y − x���y,t���x,t� , �2.2�

where for each fixed x and y, g�x−y� is an element of the
symmetry group. This relation is the basis for constructing
the topological excitations creation operator �. It implies, for
instance,

������ = 0, �2.3�

hence, we cannot have both ��� and ��� nonvanishing. It
also implies the spectrum is gapless whenever both ���=0
and ���=0.11 According to Eq. �2.3�, for these kind of sys-
tems �with just one scalar order parameter� we can basically
have only three phases. One with ����0 and ���=0, another
with ���=0 and ����0, and finally a phase with both ���
=0 and ���=0. From the large-distance behavior of the
quantum topological correlators, we show that the three
phases allowed by the dual algebra are realized in the disor-
dered system considered below.

III. THE CP1 FORMULATION OF THE SHORT-RANGE AF
HEISENBERG SPIN GLASS

A. Nonlinear sigma model formulation

We review in this and in the next subsection the field-
theoretical description of the disordered SO�3� quantum

Heisenberg-type system, which was studied with great detail
in Refs. 1 and 2. It is described by the Hamiltonian operator,

Ĥ = �
�ij�

JijŜi · Ŝ j , �3.1�

with nearest-neighbor interactions on a 2D square lattice of
spacing a, having the random couplings Jij associated with a
Gaussian probability distribution with variance �J and cen-

tered in J̄�0, namely,

P�Jij� =
1

	2���J�2
exp
−

�Jij − J̄�2

2��J�2 � . �3.2�

We consider the case of quenched disorder, which is con-
veniently dealt with the replica method.3,4 In this case the
average free energy is given by

F̄ = − kBT lim
n→0

1

n
��Zn�av − 1� , �3.3�

where �Zn�av is the disorder-averaged replicated partition
function.

With the help of spin coherent states ��i
����� such that

��i
�����Ŝi

���i
����� = S�i

���� , �3.4�

where S is the spin quantum number, it was shown1 that in
the continuum limit, the average replicated partition function
corresponding to Eq. �3.1� could be written as

�Zn�av =� DnDQD� exp−� d�LJ̄,��n�,Q�	,���� ,

�3.5�

where the corresponding Lagrangian density is a generalized
relativistic NLSM

LJ̄,� =
1

2
��n��2 +

1

2c2 ���n
��2 + i����n��2 − 
s�

+
D

2
� d��
Qab

�	��,���Qab
�	��,���

−
2


s
na

����Qab
�	��,���nb

	����� . �3.6�

where D=S4��J�2 /a2 �a is the lattice parameter� and 
s

=S2J̄. In the above expression, summation on the replica
indices � ,	=1, . . . ,n is understood.

The field n�= ��� ,�� �� is the continuum limit of the �stag-
gered� spin �� and satisfies the constraint n� ·n�=
s, which
is implemented by integration on ��.

Decomposing Q�	 into replica diagonal and off-diagonal
parts,

Qab
�	�r�;�,��� � �ab���	��r�;�,��� + q�	�r�;�,���� , �3.7�

where q�	=0 for �=	, we get
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LJ̄,� =
1

2
��n��2 +

1

2c2 ���n
��2 + i����n��2 − 
s�

+
3D

2
� d��
n�2��,��� + q�	��,���q�	��,���

−
D


s
n�������,���n����� −

D


s
n����q�	��,���n	����� .

�3.8�

This was the starting point for the CP1 formulation, which
was derived in Ref. 2. In a previous work,1 we took a differ-
ent path: from Eq. �3.8�, we integrated over the �� field and
thereby obtained an effective action for the remaining fields.
This allowed the determination of the average free energy
and, out of this, the phase diagram of the system. Identical
results were found within the CP1 framework.2

B. CP1 formulation

Introducing the CP1 field as usual, by the relation

n���� =
1

	
s

�zi
������ijzj

����� , �3.9�

where the zi
� field satisfies the constraint

�z1
��2 + �z2

��2 = 
s �3.10�

and using the correspondence

1

2
��n��2 +

1

2c2 ���n
��2 ⇔ 2�

i=1

2

�D�zi
��2, �3.11�

�D�=��+ iA��, which comprises a functional integration
over the auxiliary vector field A�, we obtain2

�Zn�av =� DzDz�DA�D�DqD�e−S, �3.12�

where S�zi
� ,zi

�� ,A� ,� ,��� ,��� ,q�	�� ,���� is the action corre-
sponding to the Lagrangian density

LJ̄,�,CP1 = 2�D�zi
��2 + i����zi

��2 − 
s� +
3D

2
� d���n�2��,���

+ q�	��,���q�	��,���� +
2D


s
2 � d�������,����

��zi
������2�zj

������2� − �zi
��zj

���������,�����	

+ q�	��,�����zi
	zj

�	������ , �3.13�

where summation in i , j ,� ,	 is understood.
In Ref. 2, we have determined the average free energy, by

expanding the fields around their stationary point in Eq.
�3.12� and integrating the quadratic quantum fluctuations of
the zi

� fields, namely,

S�zi
�,zi

��,A�,��,�,q�	� = S�zi,s
� ,zi,s

��,A�
s ,m2,�s,qs

�	�

+
1

2
� d�d���i

�����Mij
�	��,���� j

	���� ,

�3.14�

where �i
�=zi

�−zi,s
� and M is the matrix

M =�
�2S

�zi
�����zj

�	����
�2S

�zi
�����zj

	����
�2S

�zi
������zj

�	����
�2S

�zi
������zj

	����
� , �3.15�

with elements taken at the stationary fields.
Inserting Eq. �3.14� in Eq. �3.12� we obtain, after integrat-

ing over the z fields,

�Zn�av = e−nSeff��s
�,m2,A�

s ,qs
�	��−���,�s��−����, �3.16�

where

Seff = S��s
�,m2,A�

s ,qs
�	,�s� −

1

n
ln Det M , �3.17�

We conclude, because of Eq. �3.3�, that

F̄ =
1

	
Seff��s

�,m2,A�
s ,qs

�	�� − ���,�s�� − ���� . �3.18�

In the previous expressions, the subscript s means that the
fields are taken at their stationary values: �s �m2=2i�s is the
spin gap�, As,�=0, �s��−��� and qs

�	��−���.
The staggered magnetization �s

� is given in terms of the
CP1 fields as

�s
2 =

1

n
�
�=1

n

��z1,s
� �2 + �z2,s

� �2� �
1

n
�
�=1

n

��
2 . �3.19�

From the average free energy one can derive the phase
diagram of the system, which is shown in Fig. 1.1,2 This
presents a critical line separating the SG and paramagnetic
�PM� phases, which starts, at T=0, in the quantum critical
point


0 =
�

2�

1 +

1

�

1 +

1

2
ln�1 + ���� , �3.20�

where

� = 3�� J̄

�J
�2

=
3�
s

2�2

D
�3.21�

and �=1 /a is the high-momentum cutoff. For 
�
0, there
is an ordered �AF� Néel phase at T=0.

The Edwards-Anderson �EA� order parameter, which is
used for detecting the occurrence of a SG phase,3,4 is given
by

qEA = Tq̄0, �3.22�

where
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q̄0 =
1

n�n − 1���,	
q�	��n = 0� .

��n are the Matsubara frequencies�.
A detailed study of the phase diagram of the system, ex-

plicitly showing the J̄ and �J dependence can be found in
Ref. 2. We would like to emphasize that in obtaining the
above phase diagram, both in the CP1 and NLSM versions,
quantum fluctuations have been included in the derivation of
the average free energy, hence it goes beyond the mean-field
approximation. The fact that the ordered AF phase is washed
out from any T�0 is a clear evidence for this.

Our extended NLSM depends on the coupling J̄ precisely
in the same way as the usual NLSM. Thus, the analysis of
the validity of the approximations made, as a function of the
value of this coupling follows closely the corresponding
analysis well known in the simple NLSM.12

IV. QUANTUM SKYRMION CORRELATION FUNCTIONS

A. General method

Given a theory containing an abelian gauge field in two
dimensions, the topological excitations are magnetic
vortices.13,14 Skyrmions, which are topological excitations of
the NLSM, accordingly, appear as magnetic �in the A� field�
vortices in the CP1 formulation. The correlation functions of
the corresponding vortex quantum creation operator ��x� ,��
are obtained by treating this operator as a disorder variable,
dual to the order parameter of the system, as we saw in Sec.
II. Then, a method of quantization has been developed,13,14

where all correlation functions of the topological excitation
creation operator, can be obtained by modifying the inte-
grand of the partition function by adding to the correspond-
ing field intensity tensor F��, an external particular field con-

figuration B̃���z ;x ,y�. We implement this method below for
the present case.

We will take the CP1 field zi as the “order” field. From Eq.
�3.19�, it is clear that whenever �zi

���0, the staggered mag-
netization will not vanish as well. We can then introduce the
dual algebra relating zi

� with the topological excitation cre-
ation operator, in the form of Eq. �2.2�. Using the fact that
the symmetry group of the model is U�1�, we have13

��x,t�zi
��y,t� = exp�i arg�y − x��zi

��y,t���x,t� . �4.1�

The vortex creation operator � satisfying Eq. �4.1� is given
by13

��x,t� = expi2�� d2r arg�r − x��
�=1

n

�zi
���i

�� − zi
��i

��

�r,t�� , �4.2�

where �i
� is the momentum canonically conjugate to zi

�.
Whenever the A�-field kinematics is described by a Maxwell
term, this can also be written as

��x,t� = expi2�� d2r arg�r − x��iF
0i�r,t�� ,

by just considering the field equation. Then, using the
Cauchy-Riemann equation for arg�r−x� and the analytical
properties of this function, we obtain, equivalently

��x,t� = expi2��
�x,t�

�

d�i�
ijF0j�r,t�� , �4.3�

where F�� is the field intensity tensor corresponding to A�.
This last form of the operator is the most useful for ob-

taining the correlation functions. It is not difficult to infer
from Eq. �4.3� that, for a Maxwell-type action, for which Sg
is quadratic in F��, the �-field two-point correlation function
will be given by13

���x,���†�y,���� =� DA� exp�− Sg�F�� + B̃���z;x,y��� ,

�4.4�

where

B̃���z;x,y� = 2��
x=�x,��

y=�y,���
d��������z − �� . �4.5�

This turns out to be a general expression for the topological
excitation correlators, namely, it holds for any action Sg�F���
whatsoever, irrespective of its form.14,13

Now, an important adjustment must be made, in order to
adapt this result to the present disordered system. In order to
recover the physical thermodynamics, we must take the limit
where the number of replicas vanishes, n→0, hence we must
be careful when defining the physical correlator in this limit.
From Eq. �4.2�, we see that we actually have

0

5

10

15

20

0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

T
c

ρs / ρ0 (0)

SG

PM

AFρ0

Critical curve
AF line

FIG. 1. Phase diagram for �=102 and �=103. The critical curve
valid near the QCP 
0 �solid curve�. 
0�0�=� /2� is the quantum
critical point of the pure AF system. The value ascribed to � is a

realistic one in K ��→ �vs

kB
�; vs: spin-wave velocity�.
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���†� = �
�=1

n

���†��, �4.6�

because fields belonging to different replicas commute. It is
natural, therefore, to define the physical correlation function
as the geometrical average among the n replicas, before tak-
ing the limit n→0, namely,

���†�phys = lim
n→0


�
�=1

n

���†���1/n

= lim
n→0

���†�1/n, �4.7�

where the correlator on the right-hand side is given by Eq.
�4.4�.

B. Effective gauge field theory

We must now determine the form of the A�-field action
Sg�F��� in Eq. �4.4�, in order to calculate the topological
quantum correlation function. For this purpose, we start from
the CP1 description of the system,2 expand the action in the
zi’s and A� fields up to the second order around the stationary
points �zi

�=A�
s =0� and perform the quadratic zi integrals. We

must stress that, expanding around zi
�=0, we are only con-

sidering the case when ���=0 and therefore this analysis
does not apply to the ordered AF phase. This has been al-
ready considered elsewhere.15

ZA�
=� DzDz�DA�e−S�zi

�,zi
��,A�,m2,�s��−���.qs

�	��−����. �4.8�

We took the fields � ,� and q�	 at their stationary point leav-
ing the integrals in zi and A�. Then, integrating on the zi
fields and expanding the action in the A� field up to quadratic
fluctuations around the stationary configuration A�

s =0, we
get

ZA�
=� DA�e−Sg�A��, �4.9�

where

Sg�A�� =
n

2
�

0

	

d�� d2rA�
�2Seff�A��
�A��A�

�
A�=0

A�. �4.10�

In Appendix A, we show that the action for the A� field
can be written as

Sg�A�� = n�
0

	

d�� d2r�

4
F��F��

+
�

4
�

0

	

d��� d2r�F���r,���̃�r,r�;�,���F���r�,���� ,

�4.11�

where �= m
4� , �= q̄0� D

2�
s
� and

�̃�k�,�n� =
T

��k��2 + �n
2�
�

0

1 dx

�k��2x�1 − x� + x�n
2 + m2

�4.12�

Notice that the � term in the effective action, Eq. �4.11�,
is different from zero only in the SG phase, where q̄0�0.

C. Skyrmion correlation functions

We may write Eq. �4.4� as

���x�,���†�y�,����

=� DA� exp− �
0

	� d2r
n

2
A��− � ��A�

+ 	n��B̃�����A� +
1

4
B̃�����B̃���� , �4.13�

where

� = � + ��̃ . �4.14�

Introducing a gauge fixing term, we can integrate Eq.
�4.13� in A�, obtaining

���x�,���†�y�,����phys = exp2�2�
x

y

d���
x

y

d�
�����
��

 �����F��� − �� ;�0 − �0�

−
1

4
B̃�����B̃��� , �4.15�

where x= �x ,�� ,y= �y ,���,

F�x� ;�� = T�
�n

� d2k

�2��2F�k�,�n�eik�·x�e−i�n�, �4.16�

and

F�k�,�n� =
�

− �
=

�

�k��2 + �n
2

+
�T

��k��2 + �n
2�2�

0

1 dx

�k��2x�1 − x� + x�n
2 + m2

.

�4.17�

Using the identity

�����
�� = ��
��� − �����


in Eq. �4.15� we can see that the first term cancels the last
one in Eq. �4.13� �and in Eq. �4.15�� and the second one
gives

���x�,���†�y�,����phys = exp�4�2�F�x� − y� ;� − ��� − F��� ;0��� ,

�4.18�

where � is a short-distance cutoff. Introducing the renormal-
ized skyrmion field operator

�R�x�,�� = exp�2�2F��� ;0����x�,��,

we get the renormalized and finite correlation function

��R�x�,���R
†�y�,����phys = exp�4�2F�x� − y� ;� − ����

�4.19�

In Appendix B, we calculate the inverse Fourier trans-
forms of the � and � terms of the function F. These allow us
to determine the large-distance behavior of the quantum
skyrmion correlation functions, Eq. �4.18�.
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V. LARGE-DISTANCE BEHAVIOR OF SKYRMION
CORRELATORS

A. Néel phase

The skyrmion two-point correlation function has been
evaluated in the ordered AF phase, which occurs on the line
T=0;
s�
0 in Ref. 15. It presents the following large-
distance behavior

��R�x�,���R
†�y�,���phys

AF →
�x�−y��→�

exp�− 2��2�x� − y��� , �5.1�

where � is the staggered magnetization satisfying �2= 1
8 �
s

−
0�.1 The equation above implies

��R�AF = 0, �5.2�

meaning that the quantum skyrmion states ��R�AF are or-
thogonal to the ground state and are, consequently, non-
trivial. The exponential decay of the skyrmion correlator,
conversely, implies the corresponding quantum excitations
�skyrmion� have a gap Eg=2��2. Notice that this gap, which
may be written as

Eg =
�

4
�
s − 
0� , �5.3�

vanishes as we approach the quantum phase transition to the
SG phase at the quantum critical point �T=0,
s=
0�.

B. Paramagnetic phase

In the PM phase, we have both �=0 and q̄0=0 and, con-
sequently, only the � term of the function F in Eq. �4.17�
contributes to the skyrmion correlation function, Eq. �4.18�.
We calculated this term, for equal times, in Appendix B.
From Eq. �B.4� we have, at T=0,

��R�x�,���R
†�y�,���phys

PM →
T→0

exp ��

�x� − y��� . �5.4�

For an arbitrary temperature, T, we obtain the large-
distance behavior �see Eq. �B.7��

��R�x�,���R
†�y�,���phys

PM →
�x�−y��→�

exp ��

�x� − y��
1

2

+
�T�x� − y��

	2
coth�	2�T�x� − y����� .

�5.5�

From the above expression, we may infer that

��R�PM = exp�2�T

2	2
� � 0. �5.6�

This nonzero result is the one to be expected in the PM phase
where the topological excitations should not be genuine ex-
citations, due to the absence of spontaneous symmetry break-
ing. The above result just confirms this fact, by stating that
the topological excitation quantum state ��R�PM is not or-
thogonal to the ground state, being therefore trivial.

C. Spin-glass phase

In the SG phase, we have �=0 but now q̄0�0. Then, the
� term of the function F in Eq. �4.17� will contribute to the
skyrmion correlation function, Eq. �4.18�. We have calcu-
lated this term, for large distances and equal times, in Ap-
pendix B. This has a logarithmic behavior and therefore
dominates the large-distance behavior of the function F. In-
deed, according to Eq. �B.9�, we have

F�x� − y� ;0� →
�x�−y��→�

−
q̄0D

24�2
sm
2
1 −

3T2

2m2�ln C�x� − y�� , �5.7�

where C is a constant.
Inserting this result in Eq. �4.19�, we get

��R�x�,���R
†�y�,���phys

SG →
�x�−y��→� 1

�x� − y���
, �5.8�

where

� =
q̄0D

6
sm
2
1 −

3T2

2m2� . �5.9�

In realistic systems, we always have T2�m2 �typically T
�10 K and m�100 K, therefore � is always positive in the
SG phase. As a consequence of this

��R�x�,���R
†�y�,���phys

SG →
�x�−y��→�

0 �5.10�

and therefore

��R�SG = 0. �5.11�

This result shows that the quantum skyrmion states are or-
thogonal to the ground state in the SG phase, being therefore
nontrivial quantum states. The power-law behavior of their
two-point correlator, however implies that they have a zero
excitation gap. This is a quite interesting result. It reveals the
existence of a duality relation between the AF and SG
phases. The usual order-disorder duality occurs between the
AF and PM phases, namely, the order and disorder param-
eters, ��� and ��� are, respectively, nonzero in each of these
two phases while the other vanishes.

The duality between the AF and SG phases, for both of
which qEA�0, however, is of a different nature. The spin
excitations are gapless whereas the topological ones are
gapped in the AF phase and conversely the spin excitations
are gapped whereas the topological ones are gapless in the
SG phase. Our finding of gapless topological excitations in
the SG phase is a key step in establishing this duality rela-
tion.

D. Spin-glass phase and the BKT mechanism

There is also an important fact related to the existence of
gapless topological excitations and their associate power-law
correlators in the SG phase. When using the CP1 language
the skyrmions become vortices. The power-law behavior of
their correlation functions is a clear indication that we have a
Berezinskii-Kosterlitz-Thouless �BKT� two-dimensional sys-
tem of vortices.8 Indeed, quantum vortices do have a large-
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distance power-law decay in the low-temperature phase,
which exists below the critical point in a BKT system.9 This
explains the existence of a SG phase at a finite temperature,
as observed in Refs. 1 and 2: it is a BKT phase supporting
gapless vortices. Conversely, the presence of gapless spin-
wave excitations in the AF phase, washes this phase away at
any finite temperature through the well-known Mermin-
Wagner mechanism.6 This is the explanation for the asym-
metry found between the SG and AF phases of this system,
the former persisting at a finite T, whereas the other only
remains at T=0.

The operation of the BKT mechanism in this system only
occurs because it is possible to use a CP1 description, which
presents gapless vortices in a SG phase. Thereby one can
understand why we can have a stable SG phase in a quantum
SO�3� disordered 2D Heisenberg system but not in the cor-
responding Ising system.7 The latter does not allow a CP1

formulation with the corresponding vortices and therefore
cannot display the BKT mechanism.

E. Characterization of the spin-glass phase

The SG phase is the realization of one of the possible
phases allowed by the dual algebra of spin and topological
excitation operators, namely, the one where both ���=0 and
���=0. This criterion, both order and disorder parameters
vanishing, can be used as a more symmetrical alternative for
the characterization of a SG phase then the usual one where
���=0 and qEA�0. We can state, equivalently that a SG
phase is one where the quantum topological excitations are
nontrivial gapless states of the Hilbert space.

One can speculate whether this is a general property or a
peculiarity of the present model. From the point of view of
energetics, it is clear that the creation of a skyrmion defect
out of an ordered ground state, such as the one we have in an
AF phase, costs a finite amount of energy since a number of
spins must be flipped, in order to create the quantum-defect
state. Conversely, creating such a defect on a disordered
ground state, as the one we have in a paramagnetic phase,
clearly does not change the state of the system and therefore
costs no energy. The skyrmion operator actually does not
create a truly new state. We can consider that the topological
defects are condensed in the ground state, thereby producing
the disordered PM state. Skyrmions here are not genuine
excitations.

In a spin-glass phase the ground state is also a disordered
state. Therefore, when creating a skyrmion defect on such a
state, we may conclude that, as in the PM phase, there will
be no cost in energy, because of the disordered character of
the ground state. However, differently from the PM phase,
the SG ground state is a “frozen” disordered state. Conse-
quently, the new state generated by the inclusion of the skyr-
mion will be nontrivially different from the ground state,
despite being also disordered and having zero energy cost for
its creation. The skyrmion state, hence, must be orthogonal
to the ground state, implying the correlation function must
vanish at large distances. This way the large-distance behav-
ior of the skyrmion correlation function detects the frozen
nature of the ground state. The result is the occurrence of

zero energy nontrivial topological states orthogonal to the
ground state. The fact that they bear a nonzero topological
charge clearly distinguishes them from the ground state.

These arguments may be generalized for Ising systems,
for instance, by replacing skyrmions by Bloch walls and can
be applied whenever topological defects may be introduced.
It seems to allow a broad characterization of a SG phase, for
a vast class of systems, as one for which both the order and
disorder parameters vanish, namely, ���=0 and ���=0,
where � is the spin and � is the topological excitation op-
erators.

VI. CONCLUSION

The disordered magnetic system considered in this work
presents all the possible phases allowed by the duality rela-
tion, which exists between the staggered spin operator and
the creation operator of quantum topological excitations,
namely, quantum skyrmions. There is an ordered antiferro-
magnetic phase with ����0 and ���=0, a paramagnetic
phase with ���=0 and ����0, and a spin-glass phase, with
���=0 and ���=0.

The PM and AF phases are dual to each other, in the sense
that the order and disorder parameters, respectively, ��� and
��� show a complementary behavior, being zero or not, re-
spectively, in each of the two phases. An interesting duality
relation, however, also exists between the AF and SG phases,
concerning the gap of topological and spin excitations. In the
AF phase, we have gapless spin excitations, namely, m=0,
whereas the quantum topological excitations have a finite
gap proportional to �2 and given by Eq. �5.3�. The SG phase,
conversely, presents spin excitations with a nonvanishing
gap, namely, m�0,1,2 whereas the topological excitations are
gapless, according to Eq. �5.8�. The AF and SG phases,
therefore are dual with respect to the gap of the spin and
topological excitations. The paramagnetic phase presents
spin excitations with a gap m�0, but there are no genuine
topological excitations in the Hilbert space, since the cre-
ation operator of topological excitations acting on the ground
state produces basically the same state.

The fact that in the SG phase the skyrmion state is or-
thogonal to the vacuum in spite of having zero energy is an
indication that the ground state is frozen albeit disordered.
We, therefore arrive at an alternative characterization of a
spin-glass state, as one in which both the order and disorder
parameters vanish and the quantum topological excitations in
a magnetic systems are gapless but nontrivial.

Our results indicate that the stability of the SG phase,
where both ��� and ��� vanish, at a finite temperature, is a
consequence of the BKT mechanism. This does not apply to
Ising systems, where a vortex picture of topological excita-
tions does not exist.

The average free energy of a spin glass is expected to
have a large amount of local minima. The problem of deter-
mining the absolute minimum is a difficult one. One can find
results in the literature, indicating that renormalization group
flows may drive a replica symmetric solution toward a bro-
ken replica symmetry one. One possibility is that this would

happen in a high-coupling �J̄� limit. This would bring the
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system to a new local minimum where the replica symmetry
would be broken. This is a very interesting subject for future
investigation. It is, however beyond the scope of the present
work.
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APPENDIX A: EFFECTIVE ACTION FOR A�

Let us derive here the expression for the action of the A�

field. We will consider only the case �=0, namely, the PM
and SG phases. From Eq. �3.17� it follows, in this case that

��� = 
�2Seff�A��
�A��A�

�
A�=0

=
1

n

�2

�A��A�

�ln Det M�A���A�=0.

�A.1�

By expanding in A� and taking the derivatives before
making the limit A�→0, we find in frequency-momentum
space k�= ��n ,k��,

�����n,k�� = ��k2��� − k�k�� + Aq̄0���n,k�����, �A.2�

where

���n,k�� = T� d2q

�2��2

1

��q� �2 + m2���k� − q� �2 + �n
2 + m2�

=
T

4�
�

0

1 dx

�k��2x�1 − x� + x�n
2 + m2

. �A.3�

Multiplying and dividing the last term in Eq. �A.2� by
k2= ��k��2+�n

2� and adding a pure gauge term, the result, Eq.
�4.11�, follows, with

�̃ =
�

k2 .

APPENDIX B: FINITE-TEMPERATURE INVERSE
FOURIER TRANSFORMS

1. Inverse transform of 1
k2+�n

2

We have F−1� 1
k2+�n

2 � given by

F1�x� ;�� = T�
�n

� d2k

�2��2

ei�k�·x�−i�n��

k2 + �n
2 . �B.1�

The k� integral may be easily done,16 yielding

F1�x� ;�� =
T

2�
− lim

�→0
ln

�

2
�x�� + 2�

n=1

�

K0���n��x���e−i�n�� ,

�B.2�

where K0 is a modified Bessel function. For �=0 we can
perform the sum.16 The logarithmic term is canceled and we

get, up to a constant �which will not contribute to the skyr-
mion correlation function, as we can infer from Eq. �4.18��

F1�x� ;0� =
1

4��x� − y��1 + T�
n=1

� 
 1

	T2 + n2

�x�−y��2

−
1

	 n2

�x�−y��2
�� .

�B.3�

We immediately see that, for zero temperature we get

F1�x� ;0� →
T→0 1

4��x� − y��
. �B.4�

For finite temperatures, we obtain from Eq. �B.3�, at large
distances

F1�x� ;0� →
�x�−y��→� 1

4��x� − y��1

2
+

�T�x� − y��
	2

coth�	2�T�x� − y���� .

�B.5�

2. Inverse transform of
�̃(k� ,�n)

[k2+�n
2]2

Now we have F−1�
�̃�k�,�n�
�k2+�n

2�2 � given by

F2�x� ;�� = T�
�n

� d2k

�2��2

�̃��k��,�n�
�k2 + �n

2�2ei�k�·x�−i�n��. �B.6�

Integrating on the angular k� variable, we get

F2�x� ;�� =
T

4�
�
�n

�
0

�

dk
− 1

2

�

�k
� 1

k2 + �n
2���̃��k��,�n�

 J0�k�x���e−i�n�. �B.7�

We are actually interested in the large-distance behavior of
F2�x� ;0�. In this regime, only the k→0 will contribute to the

k integral. Since �̃��k�� ,�n� is always regular for k→0, we

can replace it by �̃�0,�n�. Then the �n sum may be per-
formed, for �=0, yielding to leading order in k

F2�x� ;0� →
�x��→� 1

12�m2
1 −
3T2

2m2� lim
�→0

�
0

�

dkk
J0�k�x���
k2 + �2 .

�B.8�

The last integral gives16 K0���x��� →
�→0

−ln C�x��, hence

F2�x� ;0� →
�x��→�

−
1

12�m2
1 −
3T2

2m2�ln C�x�� . �B.9�

This immediately leads to Eq. �5.7� and to the power-law
behavior of the skyrmion correlation function in the SG
phase, Eqs. �5.8� and �5.9�. The constant C will not contrib-
ute to the skyrmion correlation function, as we can infer
from Eq. �4.18� and therefore is not important in this frame-
work.
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